Batch Loader Requirements Report v1.0

Jethro Shell

November 26, 2012



1 Introduction

In this document, an outline of the requirements will be gifer the batch loading
process. Its structure will be as follows: A brief outlinetio goals of the batch loader
will be set out, followed by a discussion of the overall prexéself. Based upon the
requirements, further detail will be given for accompligiieach goal.

2 Goals

The batch loader is required to perform certain actionsoBeire a list of the goals of
the application in regard to the overall project requiretaefihese have been given pri-
ority statuses. Those that arehiigh status are deemed to be a minimum requirement
set.

High To import data from the Partner Organisations (PO’s) to thezl Photo data
warehouse.

High Convert the format of the supplied PO’s data to the specifigeriz in a robust
manner.

High Design and construct a long term maintainable solution.
High Keep to a minimum the need of the PO’s to manipulate the datago

High Maintain the relevance of the data held within the Fuzzy Plasita warehouse
through periodic updates.

Medium Produce a generic, dynamic approach to the conversion fafridifj data
types to the required data format (for example, MS Excel toLXM

Medium Produce a generic, dynamic approach to the mapping of aditatschemas
to the specified Fuzzy Photo data schema (currently LIDOraahe

3 Process Structure

The batch loader is an element of the overall delivery ofrimiation within this project.
It will act as a preprocessing and maintenance supportcgijah to the data held
within the warehouse structure. Figure 1 depicts a higH leeslel of the batch loader
process.

Within this abstracted view, four primary elements are extdo complete the pro-
cess.

1. Request and receive data.

2. Convert data format to correct type.
3. Map data schema to correct version.
4. Import data to warehouse.

Taking each of these elements in turn, the requirements assitge options to
accomplish them will be presented.



New Request?

New Format?

Request All Data

Request New Data

Correct Data Format?

Convert To Data Format

Correct Schema? Convert To Schema

Update Data Warehouse

Figure 1: An Outline of the Batch Loader Process.



3.1 Request and Receive Data
3.1.1 Requirement

The application requests data from a source. Dependenednchtion, the availabil-
ity of the source will need to be ascertained. The receivihthe data may require
predefined knowledge of the data type. This can be acconepl@tpriori through
interaction with the Partner Organisations (PQO’s) or byube of other procedures.

3.1.2 Approach

The gathering of data will be heavily dependent on the formhéte source from each
Partner Organisation (PO). Initial delivery of data may eotirough varying media.
The importing of data to the batch loader, as a result, neels sufficiently robust to
manage local and distributed file locations.

The locality of the file system to the batch loading applimatcan be absorbed
within the network structure. Access to distributed files ba accommodated with the
use of secure network traffic or through the use of a web-biasedace.

A standard application of a Relational Database Manage/@gstem (RDMS)
such as MySQL along side the use of a web based server allovisdalistribution
of data. Equally implementations such as SPARQL ProtocdlRDF Query Lan-
guage (SPARQL) allow for the querying, retrieval and matdpng of data from re-
mote locations. Through the connection to a SPARQL endpoimséer can query a
knowledge base via the SPARQL language retrieving the reduata in Extensible
Markup Language (XML) format. Currently a number of musewand archives are
using the SPARQL interface including the British Museuml€ation.

3.2 Convert Data
3.2.1 Requirement

This section of the application will convert single and nipl# files across data struc-
tures to a unified final file type in accordance with the reglispecification. Figure
1 shows an example conversion from a relational data form#te form of an SQL
database, to the required configuration. Presently thistakie the form of an XML
structure.

3.2.2 Approach

One of the key elements of the batch loader process is theigtiod of a unified data
format. It is envisaged that the PO’s will supply data in wiagyformats. Once this
has been identified, there will be a need to convert the dagasiogle format. Two
approaches that can be adopted arendividualised and ageneralised approach.

Individualised Approach In order to convert each file type, an individual config-
uration file / process can be constructed. This can either &gped to a separate
conversion application or a individual conversion tool barproduced to carry out the
necessary changes. The speed of implementation will beoptiopal to the quantity
of file types that are identified in the preliminary data gatigg conducted with the
PO’s. This approach can supply a robust initial applicaiod satisfy the minimum



requirement set, however changes to data structures witdiRO’s would require di-
rect alterations to the corresponding configuration fileotpss.

Generalised, Modular Approach To facilitate the implementation of a generic, dy-
namic data conversion method, there can be the use of a djsedrglobal approach.
Two steps are required to achieve this method.

The first step is the recognition of the data types. Diffedapgroaches can be used
in file type identification. An initial allocation of allowefile type conversions can
be used to increase the speed of implementation and rolsgstiikis however can be
at the detriment of flexibility and possible legacy. Futuregding the system would
require clear communication with PO’s (as previously désad) to instigate changes
to the process.

A generalised approach moves towards the absorption ofadheecsion process
into the application. The identification of the file formatwld be handled through an
automated process. Simplistic methods can be employedé¢otas the parameters of
a file. Processes such as the use of the Uilexprogram which is able to supply the
type of data contained within the file structure using magimbers. For example:

file test.odt test.odt: OpenDocunent Text ‘

Tools have also been developed to capture file informatiohe WK National
Archives have developed the Digital Record Object Idertifan (DROID) tool. Writ-
ten in Java and part of the PRONOM project, the DROID tool astan automatic file
format identifier [2].

TrID offers similar file identification. Using a database @ffiditions which de-
scribe recurring patterns for supported file types, TriDniifees files by their binary
signatures. A probability rating is returned against ealehlfased on the signature
within the database. The definitions database can be updatedy alterations or
newly defined file types can be captured.

The second step is the conversion of the file format into theecospecified type. A
mapping can be created between specific file types and caowéeshniques. There
are a number of tools that can be employed to convert non-Xdithé compliant
XML structure. csv2xml [1] is a BSD/Linux based tool that ldeto convert Comma-
Separated Values (CSV) files to XML. JSefa [3] approachestimwersion of CSV
files through the use of the Java programming language andréation of an API.
There is support for a number of spreadsheets including Offiee and LibreOffice
conversion [5] and Microsoft Excel formats [4].

Significantresearch has been applied to isolating file t{A®&9, 7]. Fong et al. [8]
propose a the translation of the schema of a relational dagaimto an XML schema
through the use of an Extended Entity Relationship (EER)ehdetom the EER model
a stepwise procedure produces the XML output.

3.3 Mapping of Schema
3.3.1 Requirement

In the transitional process of forming the final file type, thegch loader will form
the data structure into the correct schema. The schema avilonpliant with the
parameters set out within the LIDO schema.



3.3.2 Approach

Two overarching approaches can be used to alter the datauseuo the final schema
(although variations of either approach are viable).

Individualised Approach A simplistic, individualised approach can be used to con-
struct single configuration files that orchestrate the fdionaof the appropriate schema.
Each file will be assigned to individual PO’s. Based on knonfioiimation sourced
through interaction with the PQO's, the files will be maintdhand updated. The pro-
cess is illustrated in Figure 2.

Individual Configuration Application

CSV to XML Individual Mapping

(20

P{ Individual Mapping

S
=
o
2
2

Global Configuration Application

Global Configuration

-)(Ascertain FormaD—}(Convert formaD—b(Ontology Mapping

Fuzzy Photo Persistant Data)

(g p

Distributed

Figure 2: An Outline of the Conversion Process Indicatirgglilse of Both an Individ-
ual and Global Configuration.

The configuration shows the use of individually construdtied that have prede-
fined knowledge of the file format. Based upon this knowledlye data format of the
file is constructed. Similarly, an individual mapping presés used to form the final
XML file. This is based on previously sourced informationdfie to the collection.
Individual categories are mapped on an individual basis.

The use of an individualised approach can increase the ggfdatplementation
through a reduction in complexity. There is however, a regfuent to maintain strong
links with the PO’s in order to maintain the persistence @& tlata held within the
system.

Generalised Approach In contrast to the simplified nature of the individualised ap
proach, a global configuration can be used to offer a geserhlidynamic approach.
Figure 2 highlights the use of a global configuration. Local distributed data sources
are absorbed into the system through the use of abstraaiien Based on the file that



is received, a single application determines the file tyehHile type can be either be
assigned a conversion process or alternatively a singlécafipn can parse all of the
required data formats.

Following this initial step, the system maps the desireaésthto the data through
an integrated procedure. To offer a level of autonomy, arsehentology can be gen-
erated to map the items that are within hierarchically médlements. Virtuoso’s
Sponger system implements a similar process [6]. Althowghdsed on RDF/XML,
the Sponger uses a middleware component to offer a pluggatiecture to extract
data from one or more sources. Core functionality is offeredartridges. Ontology
mappers map the extracted data to one or more ontologiesfsshon the route to
producing Resource Description Framework (RDF) linkeddat

Varying degrees of generalisation can be placed within jfstesn. Knowledge
elicitation that has occurred through the formation of pyas individualised files can
form the basis of an ontology so creatindyase of knowledge. Using this base, semi-
automated schema discovery can occur.

The generalised approach allows for a decrease in the use btitnan element
within the maintenance of the batch loader, however thigtis the addition of added
complexity. Due to the complexity and dynamic nature of tatadources, an element
of human post processing will also need to be included tafglathema mapping.

3.4 Import Data
3.4.1 Requirement

The final data format and schema that are produced are intbiotte the data ware-
house.

3.4.2 Approach

Depending on the basis for the persistent storage strategyyill be carried out either
through the use of an interface with the database or via aemiom with the batch
loader. A number of database to implementation strategepa@ssible. These can be
summarised in three broad categories:

Relational

e Transactional processing using SQL as an access language.
e Data is stored on disk in a table structure.
e Concurrency is controlled through dynamic locking.
e Mature and widely adopted.

Analytical

o Referred to as Online Analytical Processing (OLAP)

e Can be referred to as Multiple Online Analytical Proces§M@LAP) and
Relational Online Analytical Processing (ROLAP).

e MOLAP uses multidimensional database for querying, ROLAPsua re-
lational database.

e Used for large data stores such as data warehouses.
e Use of SQL and MDX languages.



NOSQL

e Describes aslot Only SQL
¢ Non relational and schema free so can cope well with voldtla.
e Can be distributed, highly scalable with high performance.
e Able to use disk and memory based access.
e Multiple structures:

— Key Value Stores
— Column Family

— Document Stores
— Graph Databases

Multiple database applications are available for eachyoate More information
regarding the data warehouse structure will be given in aegirent document.

References

[1] csv2xml - a csv to xml converter. http://csv2xml.sodorge.net/, November
2012. Online: accessed 23rd November 2012.

[2] Digital record object identification. http://droid.sceforge.net/, November
2012. Online: accessed 8th November 2012.

[3] Java simple exchange format api. http://jsefa.souncgs.net/index.html, Novem-
ber 2012. Online: accessed 20th November 2012.

[4] Microsoft office: Export xml data. http://office.micro.com/en-gb/excel-
help/export-xml-data-HP010206401.aspx, November 200hline: accessed
23rd November 2012.

[5] oooexport. http://digitalimprint.com/misc/oooexpoNovember 2012. Online:
accessed 20th December 2012.

[6] Virtuoso sponger. http://virtuoso.openlinksw.coraspace/dav/wiki/Main/VirtSponger,
November 2012. Online: accessed 23rd November 2012.

[7] I. Ahmed, K.S. Lhee, H.J. Shin, and M.P. Hong. Fast conbased file type
identification.Advancesin Digital Forensics VI, pages 65—75, 2011.

[8] J. Fong, F. Pang, and C. Bloor. Converting relationabtase into xml docu-
ment. InDatabase and Expert Systems Applications, 2001. Proceedings. 12th
International Workshop on, pages 61-65. IEEE, 2001.

[9] R.M. Harris. Using artificial neural networks for foraadile type identification.
Master’s Thesis, Purdue University, 2007.

[10] M. McDaniel and M.H. Heydari. Content based file typeetdion algorithms.
In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on, page 10 pp., jan. 2003.



