FuzzyPhoto Project WP5 Record Matching

David Croft

February 2, 2015

Contents

1 Match creation

1.1 Title . . o oo o
1.2 Person
1.2.1 Tokenisation/filtering
1.2.2 Element similarity
1.2.3 Element ordering
1.2.4 Match weighting
1.2.5 Overall weighting
1.3 Process.
1.3.1 Extraction
1.3.2 Metric
1.4 Date
1.4.1 Extraction
1.4.2 Metrico
1.5 Overall record
1.5.1 Geometric defuzzification
1.6 Dendrogram
2 Directory structure
3 Programs
3.1 Extracting records from database
3.1.1 Running
3.1.2 Dependencies oL,
3.2 Setting seed records
321 Runningo
3.2.2 Dependencies
3.3 Match generation
331 Running o
3.3.2 Dependencies
3.4 Single match file creation

341 Running L oo
3.4.2 Dependencies

4 Process flow

4.1 Automation of the process
411 runsh
4.1.2 json file transfero

5 File formats

5.1 Recordfile
52 Matchfile
5.3 Single match file oo
5.4 Word similarity files 00
5.5 Processes configuration

6 Process hierarchy
6.1 Visualisation. oo

Contact

This documentation is intended to contain all the information necessary to
understand the fuzzymatch process created for the FuzzyPhoto project from
beginning to end (see section 4). It is, however, difficult to conceive of ev-
ery circumstance especially when covering topics which seem intuitive to me
because I wrote the process. If this documentation does not address your
specific query, please contact me at david@somewebsite.co.uk, this e-mail
address will remain valid indefinitely.

Dr David Croft.

Chapter 1

Match creation

The fuzzyphoto project is a 2 year Arts & Humanities Research Council
(AHRC) funded research project (AH/J004367/1) that attempts to identify
co-referent records across records from multiple collections of historic pho-
tographs. Due to the nature of the records, the disparate sources of the
records, a lack of standardisation for metadata within GLAM institutions
and other factors, even when two records are referring to the same photo-
graph the chance of those records being identical is very low. In order to
identify the co-referent matches this fuzzymatch process attempts to identify
commonalities between records and the information they contain despite the
differences in the precise information held. In order to identify matches, four
pieces of information from each record are used. These are the title of the
photograph, the name of the photographer, the photographic process used to
create the photograph and the dates associated with the photograph (most
typically the date taken).

1.1 Title

The similarity metric used for processing the title fields is a modified ver-
sion of the LSS metric published previously. The metric is effectively just
a cosine similarity metric. However, instead of operating on the raw term
vectors representing the title fields being compared, the metric modifies these
term vectors to account for semantic similarities between the individual terms
within the vectors. In this respect the metric is similar to LSA or STASIS.
The metric we use is, however, significantly faster than either of those. The
term vectors are modified to account for semantic similarities between the
terms using similarity values produced using WordNet.

True positive rate
)
ot
T

L —— Person
0k L7 NESim ||

| |
0 02 04 06 08 1
False positive rate

Figure 1.1: ROC curve comparison of NESim and person metric performance.

Full details on the Lightweight Semantic Similarity (LSS) metric can be
found in the previously published paper! on that subject, the only modifi-
cation is the inclusion of a minimum word similarity threshold (set at 0.33).
Any individual term similarity values that are less than or equal to the thresh-
old should be lowered to 0.0.

1.2 Person

Multiple name similarity algorithms exist, the earliest of which date back
more than a century. Unfortunately for this project the format of the names
held in the records is unknown from one record to another. Tests with exist-
ing algorithms able to handle names held in an unknown format (e.g. Named
Entity Similarity (NESim)) were unsatisfactory. This field is therefore han-
dled by a custom similarity metric which uses a combination of approximate
string comparison to compare the individual name elements and a series
of heuristic rules to identify probable matches between those elements de-
spite the elements being (potentially) recorded in different orders. While the
precision rate of the algorithm is still lower than desired, the recall rate is
excellent and the overall algorithm has produced dramatically better results
than NESim (see fig. 1.1).

'D. Croft, S. Coupland, J. Shell, and S. Brown, A fast and efficient semantic short
text similarity metric, in Computational Intelligence (UKCT), 2013 13th UK Workshop
on, Sept 2013, pp. 221227.

1.2.1 Tokenisation/filtering

The first stage is tokenisation and filtering of the raw data. The raw text is
converted to lower case and split into separate elements at the word bound-
aries. Word boundaries are considered to be anywhere a punctuation char-
acter? is found and non alphabetic characters are removed. For the worked
example this produces the two vectors seen below.

e A = [‘benjamin’, ‘frances’, ‘johnston’|
e B =[b’, ‘francis’, ‘johnston’; ‘miss’]

As our research has, so far, focused entirely on collections from Western
Europe, North America and other English speaking counties, our approach
has only been designed to work with the Latin characwter set. This would
restrict our approach the Germanic (e.g. English and German) and Romance
languages (e.g. French, Spanish etc). At present the C++ Jaro-Winkler im-
plementation we use only supports American Standard Code for Information
Interchange (ASCII) coded strings, however Unicode supporting implemen-
tations do exist in other programming languages. We are, therefore, hopeful
that our approach can be expanded to handle other encodings in the near
future, for the moment non-ASCII characters should be converted to their
ric and it does not work for languages such as Russian, Japanese or Arabic
where no ASCII compatible base form of the character set exists.

1.2.2 Element similarity

The second stage is the generation of a complete similarity matrix for el-
ements of the two vectors being compared. This has the potential to be
computationally expensive for vectors with a large number of elements, how-
ever the average number of elements is only 0.343. The resulting matrix for
the worked example can be seen in table 1.1.

Jaro-Winkler was used as the individual elements comparison method
over other techniques (specifically Jaro) as it applies additional significance to
the start of the terms being compared. This efficiently addresses the problem
of name comparisons between full names, initials and alternate short forms
of full names in most circumstances. Obviously initials will be based on the
first letter of a full name but short forms are also predominately based on the

2T.e. commas, colons, semi-colons and spaces.
3Based on an analysis of 342 797 records from 7 Gallery, Library, Archive and Museum
(GLAM) collections, the same records produced a maximum size of 20.

start of a full name rather than the middle and end. E.g. Dave from David,
Matt from Matthew. Exceptions do exist e.g. Beth from Elizabeth, Dick
from Richard. As handling these forms would likely require a white list of
known nicknames which would increase the complexity and processing time
of our approach these rare exceptions are ignored.

benjamin | frances | johnston
b 0.71 0.00 0.00
francis 0.49 0.94 0.51
johnston | 0.47 0.51 0.00
miss 0.00 0.00 1.00

Table 1.1: Jaro-Winkler similarity matrix.

1.2.3 Element ordering

Stage 3 is the ordering of the the Jaro-Winkler similarity values. For each
element of A the similarity values against B are ordered from highest to
lowest, see table 1.2.

-5 IS
S
5 ~
5 & 2
b 0.71 | francis 0.94 | johnston 1.00

francis 0.49 | johnston 0.51 | francis 0.51
johnston 0.47 | miss 0.00 | miss 0.00
miss 0.00 | b 0.00 | b 0.00

Table 1.2: Ordered Jaro-Winkler similarity matrix.

The best match between each element of A to an element from B is then
selected, in the case of the worked example the best matches are ‘benjamin'
+ ‘bt = 0.71, ‘frances‘ < ‘francis’ = 0.94 and ‘johnston‘ < ‘johnston‘ =
1.00.

Although in our earlier example every element of A matched against a
different element of B in the order similarity matrix this will not always
be the case*. Under our approach two or more elements in one vector are
not allowed to match against the same element in the other. Our approach
attempts to find the best overall (i.e. the configuration of non-overlapping

41t is, however, rare.

element matches that produces the highest combined Jaro-Winkler similar-
ity value). Whilst an exhaustive search of all of the possible combinations
(brute force) would guarantee that the optimum solution was found, this re-
sults in excessive computational requirements for the approach and is rarely
necessary. Instead the combination of element pairs is selected heuristically,
as follows.

If a collision is detected then at least one of the matches must be altered
in order to point at a different element. The match with the lowest value
should be changed. In cases where multiple matches have the same value, the
match which will produce the smallest change should be chosen. If multiple
matches will produce the same change, select the first one.

The following section demonstrates a collision situation and the match
alternations required. For this example two field values in this case are A
= [‘john’, j’, ‘doe’] and B = [john’, ‘smith’, ‘doe’]. The resulting ordered
Jaro-Winkler similarity matrix is shown in table 1.3. As that table shows,
there is a collision between the ‘john’ and ‘j’ elements in A where both have
matched to the ‘john’ element in B.

john j doe
john 1.00 | john 0.78 | doe 1.00
doe 0.53 | doe 0.00 | john 0.53
smith ~ 0.00 | smith ~ 0.00 | smith 0.00

Table 1.3: Match collision example.

In this case the correct action is to change the ‘john’ <+ ‘j” match instead
of the ‘john’ <+ ‘john’ match as this has a similarity of 0.78 as opposed to
1.00. Unfortunately making said change produces a new collision and so the
process must repeat again, the full list of changes can be seen in table 1.4.

For each element of A to match against a different element of B, |A| < | B
must be true. This is easily achieved by simply assigning the shortest vector
to be A, however in cases where |A| = | B| then the element selection should
be conducted twice with Jaro-Winkler similarity matrix transposed between
iterations.

1.2.4 Match weighting

The Jaro-Winkler values for the element matches are then weighted accord-
ing to the combined length of each pair of match elements as a proportion of
combined length of all the elements. This stage means that matches between

john j doe
1.00 0.78 | doe 1.00
doe 0.53 | doe 0.00 | john 0.53
smith 0.00 | smith 0.00 | smith 0.00

john j doe
john 1.00 0.00 1.00
doe 0.53 | smith 0.00 | john 0.53
smith 0.00 smith 0.00

john j doe
john 1.00 | smith 0.00 | doe 1.00
doe 0.53 john 0.53
smith 0.00 smith 0.00

Table 1.4: Match collision example.

two initials or matches between an initial and a full name are considered
by our process to be less important than matches between two full names.
Although two initials could be identical it does not mean that the full name
they represent is the same, our weighting approach allows the match be-
tween initials to contribute to the overall match value but also recognises its
inherent uncertainty. This effect of this weighting is shown in table 1.5.

benjamin frances johnston

b francis johnston
Jaro-Winkler | 0.71 0.94 1.00
Length 9 14 16
Weight 0.23 0.36 0.41
Combined 0.16 0.34 0.41
Result \ 0.91

Table 1.5: Combining element pair values.

1.2.5 Overall weighting

Finally the overall similarity value produced so far is weighted according to
the proportion of the combined elements from A + B that were used. If, for
example, we were to compare A against another vector C'= [‘benjamin’], then

under the approach described so far that would produce an overall similarity
value of 1.0. Therefore in order to take into account the number of elements
actually compared and so rank A <+ B < A < C, the similarity value is
modified as shown in equation 1.1 where s is the unmodified similarity value.

2-(lA]v IBI))
Al + [B

2-(3Vv4)
3+4

0.5 (s (L1)

0.5 <0.91 +0.91) = 0.845 (1.2)

1.3 Process

The process metric attempts to match the text contained in the records to a
list of known processes using a list of process keywords and an approximate
string similarity method (Jaro-Winkler). Also taken into account is the dif-
ference between colour and monochrome images and between positive and
negative images. These factors had been taken into account in two ways, in
an implicit manner where it is known that certain photographic processes
can only produce monochome/colour or positive/negative images but the
metric also looks for keywords associated with colour/monochome and posi-
tive /negative and can use these to override assumptions that would have to
be made based on the overall process type.

A by-product of this process similarity metric has been the creation of a
photographic process hierarchy. The process metric hierarchy is unusual in
comparison to other photographic process hierarchies already in existence.
Instead of organising the processes according to date or technological progres-
sion, this hierarchy is organised based on the likelihood of misidentification
between the processes. That is to say, processes which can be easily confused
with one another (i.e. dagerrotype and tintype) are positioned close together
in the hierarchy, whilst processes that would be difficult to confuse for one
another (i.e. daguerreotype and mezzo tint) are positioned distantly from
each other.

A visualisation of the full process ontology used by the fuzzymatch pro-
gram can be seen in section 6.1.

1.3.1 Extraction

To compare the process fields we must first identify any known processes
within the raw process text. As shown in section 6.1 a custom ontology of

10

photographic processes and their identifying keywords was created for the
FuzzyPhoto project.

The first stage of stage of the process identification is tokenization of the
raw text. The same tokenization system used for the person metric is re-used
here, however unlike the person metric no token filtering is required. The
resulting process vector is compared against a list of the identifying keywords
from the process ontology using the Jaro-Winkler algorithm. Elements from
the process vector and the keyword list are counted as matches when the
Jaro-Winkler value is greater than a pre-set threshold (0.9 for this project).
With the matching keywords identified it is a simple matter to identify any
processes in the ontology where the process vector has matched against all
the corresponding keywords.

At the same time that the process vector is being matched against the
process keyword list, the vector is also matched against secondary keyword
lists containing colour/monochrome and positive/negative keywords. If the
process matches against these then the relevant flags are set to indicate that
this process describes a colour/negative/positive/negative image. Otherwise
the default values from the ontology are used.

1.3.2 Metric

Process similarity is calculated based on the processes in the ontology that
each process field matches against and not based on the raw process field
text. As each process field can match to multiple processes, process distance
is calculated by selecting the maximum value from an n - m comparison.

Three factors go into the process similarity, the first of these is the distance
between the processes in the ontology. Similarities between individual pairs of
processes starts with the assumption that identical processes have a similarity
of 1 and that each edge between the pair elements halves the similarity. This
distance similarity is then weighted to make up 0.5 of the overall similarity.

The other two factors consider the color/monochrome and positive/negative
nature of the processes. Each factor makes up 0.25 of the overall similarity.
If for example both processes are (and could only be) colour then that would
count as a 0.25 increase in the overall similarity. If both processes are (and
could only be) monochrome then that would also count as a 0.25 increase.
If one process is colour and the other monochrome that would make a con-
tribution of 0.0. If the colour/monochrome states of both/either processes is
unclear but they could be a match then that makes a 0.125 contribution.

The same rules apply to the positive/negative contribution.

11

1.4 Date

The problems with the information contained in this field are two fold. Firstly
there is the syntax independent nature of this field, i.e. date information can
be represented in a number of different formats and the particular format
used for each record is unknown. Secondly there is the imprecision of the date
information held. These two problems are handled separately, The first is
handled by a rule based system built around the python dateutil libraries and
custom regexes which extracts the date information from the raw date fields.
The task is significantly simplified by only extracting the year information
of the date fields. Day and month information is discarded. The second
problem is addressed using a custom similarity metric that produces date
field similarity values based not just on how close two date fields are the
same but also the precision of that date information. For example, two fields
containing the text “19th century” and “19th century” are considered less
similar that fields containing “1910” and “1915” despite the former being
identical.

1.4.1 Extraction

Comparing date fields is treated as two separate problems. The first is ex-
tracting the date ranges from the date fields and the second is comparing the
date ranges.

Extracting the date information is achieved using a combination of the
python dateutil library® to identify well formatted date information (e.g.
“01/05/1901”, “1870-12-31” and “3rd June 1895”), a series of custom regexes
to identify less structured information (e.g. “circa 19th century” and “1950-
60s”) and a rule based system to handle ‘circa’ modifiers. In order to simply
the task, only the year information is extracted, however even with this
simplifications some information is not successfully interpreted (e.g. “pre
world war two”).

1.4.2 Metric

Once extracted the date ranges are compared on the basis of three factors
(see figure 1.2). Distance (D), measured as the number of years between the
midpoints of the two date ranges. Span (.S), the number of years between
the earliest year in either range and the latest year in either range. Overlap
(O), the number of years that both ranges cover.

®https://labix.org/python-dateutil

12

Range A
Range B
— Distancg
' Span

——— Overlap
1870 1915

Figure 1.2: Example date ranges and gaps.

In addition to the D, S and O values the date metric takes an additional
tuning parameter w which controls the time span over which the dates are
expected to appear. w is set as 200 since this is approximately the number
of years for which photography has existed. Equation 1.3 shows how these
factors are combined.

As only year information is extracted from the date fields, the end date
of all ranges are increased by 1 to account for the length of that year. This
means that a date field has a span of at least one year but also that the
similarity values produced are always < 1.0.

(s
e (—0.5 (§)> (13

0
S
datesim =s (%(0 + d))

1.5 Overall record

Due to the uncertainty and imprecision of the record information, combined
with the uncertainty of the automated extraction of the field ‘meaning’ no
single record field is sufficient to identify matching records. Matches are
instead identified using a combination of the fields. FuzzyPhoto uses a Fuzzy
Inference System (FIS) to combine the four values from the field similarity
metrics and produce an overall record similarity. The FIS uses five rules,
these are:

e IF bad_title AND bad_person THEN terrible

13

IF bad_title OR bad_person THEN bad

IF good_title OR good_person THEN good

IF good_process AND good_date THEN good

IF good_title AND good_person THEN excellent

As these rules show, the title and person metrics have a significantly
greater affect on the overall record similarity than either process or date.
The effectiveness of these rules was developed by a system of trial and error
testing in conjunction with a survey of which fields GLAM professionals
considered most important when searching manually.

1.5.1 Geometric defuzzification

The final stage in a FIS is the conversion of the resulting fuzzy set into
a crisp value, a process called defuzzification. There are a number of dif-
ferent defuzzification methods available, the FuzzyPhoto system used the x
co-ordinate of the centroid of the output fuzzy set as the defuzzified value.
Calculation of the centroid was initially achieved using a discretization ap-
proach but this proved too slow.

FuzzyPhoto instead uses a geometric decomposition approach. For fur-
ther details see our previously published paper on the subject®.

1.6 Dendrogram

In order to produce the best possible chances of relevant co-referent matches
being identified for each ‘seed’ record, the system returns not just those
records with a high similarity to the seed record directly, but also those that
have a high similarity via other nodes as seen in figure 1.3.

The similarity for each node in the dendrogram is simply the average of
the similarity of the parent node and the similarity between the two nodes as
produced by the FIS with an added edge penalty. Using the situation shown
in fig.1.3 as an example, the final similarity values for the match to record C'
would be 0.4(sim(A, B) + sim(B, C)). While the edge penalty means that
the maximum depth of the dendrogram is limited, without this penalty the

6S. Coupland, D. Croft, and S. Brown, A fast geometric defuzzication operator for
largescale information retrieval, in Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International
Conference on, July 2014, pp. 11431149.

14

A) Seed record

‘ Indirect matches

Figure 1.3: Relationships between and identification of seed, direct match
and indirect match records.

matches display a topic drift” like effect where even though each node in
the dendrogram shows a resemblance to its parent and child nodes, the seed
bears no resemblance to the leaf nodes.

Of course every record will have some degree of similarity to any seed
record. Records which produce low value matches are filtered using a simple
threshold. Only matches above the threshold are accepted and then only to a
maximum of 30 matches. For an indirect match to occur, (i.e. A— B — C
as show in fig.1.3) a direct match between those records (i.e. A — C) will
already have been attempted and rejected.

"A common problem in local feedback query expansion systems

15

Chapter 2

Directory structure

The main program in the match identification process is the fuzzymatch
program. This program requires several support and configuration files. Al-
though the locations of many of these support and configuration file locations
can can be changed at runtime (see section 3.3), they have default expected
locations. The file/directory hierarchy for a fuzzymatch program running in
its default configuration is shown below:

/

words

‘words.dat
words.xml

fuzzymatch

processconfig.xml
titlesimple.py

16

The complete file/directory hierarchy, including source files and secondary
programs is shown below:

/
| _build
| source
datecompare. cpp
datecompare.h
fuzzyphoto.cpp
fuzzyphoto.h
jarowinkler.c
jarowinkler.h
main.cpp
personcompare.cpp
personcompare.h
processcompare.cpp
processcompare.h
titlecompare.cpp
titlecompare.h
| words
‘words.dat

words.xml
| createSingleFiles.py
| dataConfig.py
| datehandler.py
| fuzzymatch
| getRecordsFile.py
| _makefile
| _processconfig.xml
| titlesimple.py

17

Chapter 3

Programs

3.1 Extracting records from database

The creation of the records file from the records held in the database is
performed by getRecordsFile.py. This program connects to the specified
database and schema and outputs a correctly formatted XML file (named
'records.xml’ by default).

3.1.1 Running

Program usage is:

python getRecordsFile.py [output filename]
For example:

python getRecordsFile.py records.xml

3.1.2 Dependencies

The getRecordsFile.py program was developed, tested and designed for use
on a Debian based system. It should, however, work on any reasonably
modern *nix platform. In order to work correctly the program has several
dependencies beyond a base Python installation, specifically:

e Python - Python v2.*. Development was done using v2.7.2 but other
versions may work. The code was not tested with v3.

e Apertium - Free translation package, used to create the translation
tags for the ’orsay’ records. The necessary installation packages are,
“apertium”, “apertium-en-es” and “apertium-fr-es”.

18

e MySQLdDb - Python interface to MySQL databases, used to query and
extract the records from the records database. The necessary installa-
tion package is “python-mysqldb”

e Lxml - Python wrapper to the libxml2 libraries, used to handle XML
file read /write. The necessary installation package is “python-lxml”

e Datehandler - Custom writing python library designed to handle un-
certain date formats. Contained in the datehandler.py file.

e Dateutil - Extensions to the datetime module. The necessary installa-
tion package is “python-dateutil”.

On Debian based systems the necessary packages can be installed using the
following command:

3.2 Setting seed records

The resulting file will not have any seed attributes configured. While it is
possible to pass the file to the fuzzy match program as is, this will cause
the program to generate matches for all of the records. At time of writing,
only the erps, orsay, nmem and st_andrews collections were expected to have
widget integration on their websites in the near future. As such, only those
collections need matches generated for their records. The dataConfig.py pro-
gram will read in a records XML file (‘records.xml’ by default) and output
copy ("process.xml’ by default) with only the required seed attributes set.

3.2.1 Running

Program usage is:

python dataConfig.py [input filename] [output filename]
For example:

python dataConfig.py records.xml process.xml

3.2.2 Dependencies

The dataConfig.py program was developed, tested and designed for use on a
Debian based system. It should, however, work on any reasonably modern
*nix platform. In order to work correctly the program has dependencies
beyond a base Python installation, specifically:

19

e Ixml - Python wrapper to the libxml2 libraries, used to handle XML
file read /write. The necessary installation package is “python-lxml”

3.3 Match generation

3.3.1 Running

Program usage is:

./fuzzymatch xml_filename [dat filename]

Optional arguments

The fuzzymatch program is multi-threaded for additional performance, by
default the program will run across all cores simultaneously. The program
will maximise CPU usage on whatever cores it runs, this can cause problems
for other time critical programs running on the same machine. The number
of cores used can, therefore, be specified using the -t flag. Values supplied to
this flag must be greater than zero.

For example:

./fuzzymatch process.xml output.dat

The names and relationships of the photographic processes used by the pro-
cess metric are contained in the (by default) processconfig.xml file as seen in
the file hierarchy shown in section 5.5.

The process configuration file used by the fuzzymatch program can be changed
using the optional -p argument. For example:

./fuzzymatch -p processconfig.xml process.xml

3.3.2 Dependencies

The fuzzymatch program requires several external libraries in order to com-
pile and run, specifically:

e Python - Python v2.*. Development was done using v2.7.2 but other
versions may work. The code was not tested with v3.

e NLTK - Natural Language ToolKit. Specifically the python wrapper
to it. The necessary installation package is “python-nltk”

20

e Tinyxml2 - On Debian based systems the installation packages available
are via aptitude are flawed, tinyxml2 should therefore be installed from
source, see section 3.3.2.

e Boost - Specifically the Regex libraries. The necessary installation
package is “libboost-regex1.4.9-dev” but “libboost-all-dev” is recom-
mended.

Tinyxml2 installation

Tinyxml2 can be installed using the following commands.

wget https://github.com/leethomason/tinyxml2/archive/master.zip
-0 tinyxml2-master.zip # download the source code

unzip tinyxml2-master.zip

mkdir tinyxml2-build

cd tinyxml2-build

cmake ../tinyxml2-master # run cmake

make -j4 2>&1 | tee ../Tinyxml2Make.log # make TinyXMLZ2 and
save a log of the compilation

sudo make install 2>&1 | tee ../Tinyxml2MakeInstall.log # install
the compiled TinyXMLZ2 and save a log of the installation

3.4 Single match file creation

3.4.1 Running

Program usage is:

python createSingleFiles.py recordfile datfile [source]

Optional arguments

The createSingleFiles program requires a record file and a match file. It is
important that the same record and match files match up, i.e. the record file
is the same one used to create the match file.

For example:

python createSingleFiles.py process.xml output.dat

By default the createSingleFiles program will produce a singlematch file for
every record listed in the match file. However, if the matches for a specific

21

institution are required, then then those sources can be listed and the cre-
ateSingleFiles program will only produce singlematch files for the specified
sources.

For example:

python createSingleFiles.py process.xml output.dat erps loc

3.4.2 Dependencies

The dataConfig.py program was developed, tested and designed for use on a
Debian based system. It should, however, work on any reasonably modern
*nix platform. In order to work correctly the program has dependencies
beyond a base Python installation, specifically:

e Ixml - Python wrapper to the libxml2 libraries, used to handle XML
file read /write. The necessary installation package is “python-lxml”

22

Chapter 4

Process flow

The complete series of actions necessary to go from the database containing
collection records to a series of individual match files involves multiple files
and programs which must be run in a specific sequence.

The complete sequence of programs along with how the output files of one
process feed into the next process/es can be seen in figure 4.1. For simplicity’s
sake the default files names expected/produced by each process have been
shown in figure 4.1. The filesnames/locations can be changed at runtime
using as described in section 3.

4.1 Automation of the process

4.1.1 run.sh

In order to simply the creation of the matches and allow for program to be
run automatically in the future, the run.sh batch file was created.

When executed, the run.sh file runs the complete sequence of programs re-
quired to go from records held in the LIDO database to the .json files which
represent the record matches. The run.sh file also copies the .json files from
the processing server onto the internet accessible webserver for use by the
widgets on the various partner websites.

4.1.2 .json file transfer

Copying the .json files to the webserver is included as one of the run.sh ac-
tions and is achieved using the rsync file transfer program. For rsync to be
successfully connect to the webserver without requiring manual interaction
requires the use of ssh keys. By default the run.sh batch file will use ‘fuzzy-
webserver_rsa’ private ssh key file located in the ssh keys folder (see section

23

Start ’

python getRecords.py —/ records.xml /
python dataConfig.py ﬁ/ process.xml /

>

/ words /g ./fuzzymatch / output.dat /

python createSingleFiles.py

/ Match XML files /

‘ Stop ’

Figure 4.1: Process flow diagram.

2). For this to work the ‘fuzzywebserver_rsa.pub’ public ssh key file needs
to have been added to the authorized keys file located on the webserver in
advance.

Chapter 5

File formats

5.1 Record file

Records from the various collections are stored in a MySQL database. During
development the decision was made to keep the database and match portions
of this project separate so as to ease development and prevent potential
issues regarding network and/or database access. Therefore, the required
information is extracted from the database before being passed to the match
software as opposed to the match software having direct database integration.
The match software ingests record information as XML files in the format
detailed below. The format supplies not just the record information but also
the configuration options of the fuzzy match software.

The basic file framework is as follows:

<records count="0" balancedthresh="0.7" personthresh="0.7"
titlethresh="0.5">
</records>

count is an optional attribute detailing the number of records contained
in the balancedthresh, personthresh and titlethresh and optional at-
tributes which control the minimum similarity thresholds for each of the
match types performed by the fuzzy match program. Record pair matches
with similarities lower than the relevant threshold will be ignored.
Individual records are described as follows:

<record 1d="12345" published_id="aaa" source="erps"
seed="true">
</record>

'id” is a required, numeric attribute. 'published_id” and ’'source’ are not re-
quired for the fuzzy match software but are required for later processes and

25

should, therefore, be included. The seed attribute controls which records
will be processed by the fuzzymatch program and should have a value of
true or false. If the seed attribute is missing, then a value of false is
assumed.

The example above is for a blank record containing no field information, a
more typical example would be.

<record 1d="12345" published_id="aaa" source="erps"
seed="true">
<title>Example title 1</title>
<person>John Doe</person>
<process>Photograph</process>
<startdate>1900</startdate>
<enddate>1901</enddate>
<link>http://www.example.com/12345</1ink>
</record>

title, person and process all accept strings. startdate and enddate
should contain 4 digit integers only, representing the relevant years. link
should contain a url or be left blank.

In the event that the title is in a language other that English, an addi-
tional translation tag should be used. This tag should contain the English
translation of the contents of the title tag. For example:

<record 1d="54321" published_id="bbb" source="orsay" seed="true">
<title>Le example title</title>
<translation>The example title</translation>

</record>

At present the translation tag is only utilised with records from the Musée
d’Orsay (source ’orsay’).

<records count="2">
<record 1d="12345" published_id="aaa" source="erps"

seed="true">

<title>Example title 1</title>

<person>John Doe</person>

<process>Photograph</process>

<startdate>1900</startdate>

<enddate>1901</enddate>

<link>http://www.example.com/12345</1link>

26

</record>
<record 1d="54321" published_id="bbb" source="orsay"
seed="true">
<title>Le example title</title>
<translation>The example title</translation>
</record>
</records>

5.2 Match file

This file is read in and outputted by the fuzzymatch program and read in by
the createSingleFiles program. It contains the information regarding which
records (as listed in a records file) have been processed. Similarity values
from record comparisons and matches identifies. A single file contains all
the information for the balanced, title and person matches. This file can
also be used by the fuzzymatch program to resume processing at the point
it previously stopped.

File structure is simple, consisting of lines of four fields. Each line has the
following structure.

parent_id|typelchild_id|value]
For example:

123111123[1.0]
123/1145610.5|
12312178910.6|
456(1145611.0]|
45611112310.5]

The individual fields have the following meanings:

e parent_id - This is the id of the record that the match is from. The id
value corresponds to the value of an id attribute in the records file.

e type - This is the type of match that the line records. Valid values are
-3,-2,-1, 1, 2 and 3.

Values 1, 2 and 3 are direct matches from one record to another. 1 is
a balanced match, 2 a title match and 3 a person match

Values -1, -2 and -3 are dendrogram matches from one record to an-
other, potentially via other records. -1 is a balanced match, -2 a title
match and -3 a person match.

27

e child_id - This is the id of the record that the match is to. The id value
corresponds to the value of an id attribute in the records file.

e value - This is the similarity value associated with the match.

Some records will not produce matches to any other records. In order to
record that these records have been processed but that they have not pro-
duced any matches, lines where both the parent and child ids are the same
can be included. In these cases the record will be recorded as having been
processed, but the value information will not actually be read in.

5.3 Single match file

Single match files are the final output of the fuzzymatch process. These files
are subsequently read in by the partner widget code to be presented on the
collection websites. The files are effectively trimmed down and rearranged
versions of the record file and follow most of the same rules as described in
section 5.1.

The differences are are follows:

e Each file now contains a single record tag although each record can
contain multiple match tags.

e match tags follow the same structure as the record tags but additional
attributes are included, these are the institution and similarity
attributes.

e institution attributes contain a long form, human readable version
of the collections specified in the source attribute.

e similarity attributes contain a 0.0 to 1.0 measure of the quality of
that match.

e match tags are grouped inside matches tags depending on match type.
Match type is specified using the type attribute, valid values are balanced,
title and person.

e match tags are ordered from high to low according the values of the
similarity attributes.

An example of a small, but fully formed and valid single match file is shown
below.

28

<record i1d="123" published_id="aaa" source="erps"
institution="Exhibitions of the Royal Photographic Society">

<title>Example title</title>
<person>Doe, J</person>
<process>Picture</process>
<url>http://www.somewebsite.co.uk/aaa</url>
<startdate>1878</startdate>
<enddate>1878</enddate>

<matches type="balanced">
<match 1d="456" published_id="bbb" source="erps"
institution="Exhibitions of the Royal Photographic Society"
similarity="1.0">
<title>Example title</title>
<person>Doe, J</person>
<process>Picture</process>
<url>http://www.somewebsite.co.uk/bbb</url>
<startdate>1878</startdate>
<enddate>1878</enddate>
</match>
<match i1d="789" published_id="ccc" source="orsay"
institution="Musee d’Orsay" similarity="0.7">
<title>Le Example Title</title>
<person>Jane Doe</person>
<process/>
<url>http://www.culturegrid.org.uk/search/1553231 . html</url>
<startdate>1890</startdate>
<enddate>1890</enddate>
<translation>The Example Title</translation>
</match>
</matches>

<matches type="title">
<match 1d="456" published_id="bbb" source="erps"

institution="Exhibitions of the Royal Photographic Society"
similarity="1.0">

<title>Example title</title>

<person>Doe, J</person>

<process>Picture</process>

<url>http://www.somewebsite.co.uk/bbb</url>

<startdate>1878</startdate>

29

<enddate>1878</enddate>
</match>
</matches>

<matches type="person">
<match 1d="789" published_id="ccc" source="orsay"
institution="Musee d’0Orsay" similarity="0.7">
<title>Le Example Title</title>
<person>Jane Doe</person>
<process/>
<url>http://www.somewebsite.co.uk/ccc</url>
<startdate>1890</startdate>
<enddate>1890</enddate>
<translation>The Example Title</translation>
</match>
</matches>
</record>

5.4 Word similarity files

The title similarity metric caches word similarity values to dramatically im-
prove the performance of subsequent runs. This cached information is stored,
between runs, in two files called words.xml and words.dat in the file hierarchy
shown previously.

The fuzzymatch project will refuse to run without these two files being
present and will update the files as necessary when new words are encoun-
tered. Producing the word similarity values is very time consuming, taking
several days, as such it is very important that these files are backed up prop-
erly.

5.5 Processes configuration

The process configuration is an XML structured file describing a hierarchy
of process relationships. Nodes in the hierarchy can have more than one par-
ent (which would technically make it a graph and not a hierarchy) but this
should be avoided when possible.

A simple example configuration file can be seen below.

<processes>

30

<color>color</color>
<color>colour</color>
<monochrome>monochrome</monochrome>
<positive>positive</positive>
<negative>negative</negative>

<process name="image"/>

<process name="paper">
<keywords>print</keywords>
<keywords>paper</keywords>
<parent>image</parent>

</process>

<process name="glass">
<keywords>glass</keywords>
<parent>image</parent>

</process>

<process name="salted paper" color="no" image="both">
<keywords>salted</keywords>
<keywords>silver chloride</keywords>
<parent>paper</parent>

</process>

</processes>

The process metric takes three factors into account, the process itself, whether
the image is colour or monochrome and whether it is a positive or negative
image. To aid this, identifying keywords associated with those factors can
be specified using the color, monochrome, positive and negative tags.
Processes are defined using the process tag which has a required name at-
tribute containing a unique name. Optional attributes are color and image
Certain photographic processes are always colour/monochrome or produce
positive/negative images. The default assumption for each process can be
set using these attributes. Valid values for both attributes are

Contained within process tags are parent tags containing the name of a
process defined elsewhere in the configuration file and keywords tags.
keywords tags define the terms associated with that process, the same key-
words can be used by multiple processes but this should be avoided as much
as possible. If more than one term is supplied inside a set of keywords tags
then those terms will only match if both terms are present, however the term
order is not taken into account.

The process metric using Jaro-Winkler to perform approximate string match-

31

ing to the keywords terms. As such matches are still possible in the event
of misspellings in the record data. However, in order to achieve the best
results, common misspellings or regional variations (i.e. colour and color)
can be included.

32

Chapter 6

Process hierarchy

6.1 Visualisation

In these diagrams rectangles represent keyword groupings associated with
a process, while ellipses, octagons and hexagons represent processes. El-
lipses are processes that produce positive images, octagons produce negative
images and hexagons can produce both. Green shapes represent processes
that produce colour images, red produce monochrome images and blue can
produce both.

33

Figure 6.1: Complete process ontology.

34

